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 This three part series is devoted to answering the question: How do I choose a motor to 

drive my robot?  We will cover all you need to know about selecting a motor to power your 

robot.  There are basically three types of motors that are used on the majority of mobile robots, 

permanent magnet direct current (PMDC), radio controlled servo (R/C servo), and stepper 

motors.  Since most of hobbyist robots, those that range in size from 8 to 16 inches in overall 

size, use PMDC motors for locomotion, this series will concentrate on choosing the correct 

motor for these robot missions.  Smaller robots frequently use R/C servo motors, heavy combat 

robots may use specialized, rare earth magnet motors and outdoor robots may use internal 

combustion engines.  Those will not be covered.  My area of interest is primarily in competition 

robots and consequently the illustrative examples will use robots my students built and entered in 

contests.  Nevertheless, the general principles outlined here will apply to all PMDC motor 

applications. 

 This series is divided into three parts: Part I covers deriving motor requirements from the 

robot’s niche – task plus environment; Part II gives the basic equations governing DC motor 

operations; Part III shows how to apply the lessons learned in Parts I & II with examples from 

three very different competition robots.  There are many PMDC motors to choose from and your 

choices will depend on a combination of the robot’s niche, what’s available, what you can afford 

or adapt, and your experience and preferences  The information that follows will show you how 

to make an informed choice. 

Copyright Notice  
This document was compiled and written by John Piccirillo and may be referenced as:  John 

Piccirillo (2009) “The Art and Science of Selecting Robot Motors”.  This material is Copyright (c) 
2009 by John Piccirillo.  Verbatim copying and distribution of this document in whole or part is not 
permitted in any medium and may not be distributed for financial gain or included in commercial 
collections or compilations without express written permission from the author.  Please send 
changes, additions, suggestions, questions, and broken link notices to the author.  
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Part I.  Setting Motor Requirements 

Introduction To DC Motors 
The good news is that there are many types of motors from which to choose and, as the 

joke goes, the bad news is that there are many types of motors from which to choose.  All 

motors, even the small DC motors considered here, can be complex and there is a large literature 

available to give you all the gory details.  While we will provide an overview that is sufficient 

for all your robot needs, I encourage you to search library bookshelves and the Internet for the 

many excellent tutorials available. 

 Choosing a motor is a compromise between what we want it to do and what is available 

at a cost we can afford.  The intelligent choice of a motor requires us to understand the workings, 

advantages, and disadvantages of various motor parameters and to develop a specification for the 

motor performance characteristics.  This will help us to choose the correct motor for the task.  

We will begin with a brief overview of PMDC motors. 

 Motors are described by a large number of operating characteristics.  We’ll list the most 

important characteristics now and give a fuller explanation of the terms later.  The motor 

characteristics we are most concerned with are:   

• Operating Voltage –  Various voltages may be given in a motor specification; most 

commonly, the nominal voltage for continuous operation.  Many motors may be operated 

at more than their rated voltage with increased torque and rotation rate, but may overheat 

if used for more than a short time.  Over volting can be used to advantage in contests with 

short time limits. 

• Motor Speed or Rotation Rate –  how fast the motor shaft turns.  This angular rate is 

almost always given as revolutions per minute (RPM), but some times as degrees or 

radians per second. 

• Torque – a measure of a motor’s ability to provide a “turning force”.  When you turn the 

lid on a jar, you exert a torque, which causes the lid to rotate.  In our application, the 

motor torque is conveyed to a wheel or a lever, which then causes the robot to move or 

the lever to lift, push, or pull something.  Torque is measured in terms of force times the 

perpendicular distance between the force and the point of rotation, i.e. the lever arm.  It is 

usually given in terms of ounce-inches (oz-inch), gram-centimeters (gm-cm) or foot-

pounds (ft-lbs).   
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• Current Draw – the current in amps (or milliamps).  This may be given for different 

conditions, such as no load (free running), nominal load (with a specific torque), and stall 

(when the motor shaft doesn’t have enough torque to overcome the imposed load and is 

unable to turn). 

• Physical Measurements (in English or Metric units) – separate measurements are usually 

provided for the overall motor size, the size of the motor shaft, and the mounting plate 

screw or bolt arrangement. 

• Special Features – some motors come with extras, such as an encoder, brake, clutch, right 

angle gear head, special mounting bracket, or dual output shafts. 

 

PMDC Gear Head Motors 

 As the name implies, DC motors run off of direct current, the kind of current that is 

supplied by batteries, which is one of the main reasons that these type of motors are used in 

robots.   Small DC motors vary quite a bit in quality but most have the same essential features.  

DC motors work by using a basic law of physics which states that a force is exerted on an 

electrical current passing through a magnetic field.  Current traveling through the motor’s 

internal wires, which are surrounded by permanent magnets, generates a force which is 

communicated to the motor shaft, around which the wires are wound.  Reversing the direction, or 

polarity, of the current changes the rotation direction of the motor shaft from clock-wise (CW) to 

counter clock-wise (CCW).  The speed is altered by varying the voltage (hence current) applied 

to the motor. 

 DC motors run at speeds of thousands of RPMs with low torque.  This is not suitable for 

driving a robot.  The output torque is much too low to move the robot.  In order to use the motor, 

we add a gearbox, a kind of transmission except that there is no shifting of gears, to reduce the 

motor speed and increase the output torque.  Thus the same motor may produce different torque 

and speed ratings depending on the gearing used between the motor and the gearbox output shaft.  

Many DC motors come with a gearbox already attached and these are simply called DC gear 

head motors and are the type of motors in which we will be most interested.  From now on we 

will simply refer to these PMDC motors as gear heads. 

The advantage of using gear head motors is that they are readily available in many sizes,  

provide a lot of torque for the power consumed, are available with a wide choice of output 
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speeds, come with various voltage ratings, will operate, with reduced speed and torque, over a 

sizeable fraction of their voltage rating, and are reversible.  The main disadvantage is that gear 

head motors are not precise.  That is, two motors of the same model, manufactured on the same 

day, and operated with identical current and voltages, will NOT turn at exactly the same rate.  

Thus a robot with two drive motors, the most common configuration, will not move in a straight 

line without some way of controlling individual motor speeds. 

Now let’s list some of the more important gear head motor parameters: 

• Availability – Gear head motors come in very small to fractional horse power sizes.  They 

are plentiful on the surplus market, which makes them inexpensive.   

• Voltage – The typical motor operating voltage for modest sized robots is in the range of six 

to 24 volts. 

• Torque –  Typical motor torques vary from 20 oz-in, useable for small platforms, to 80 oz-in, 

appropriate for eight to ten inch robots, and to several foot pounds, capable of driving robots 

weighing 50 to 75 pounds. 

• Motor Speed (ω) – The shaft RPM combined with the size of the wheels determines the 

maximum speed of the robot.  Typically, wheels for hobbyist and contest robots may vary 

from two to eight inches in diameter, with the three to five inch sizes predominating.  Note 

we use the Greek letter omega, ω, for motor speed.  We will use the letter V for vehicle 

speed. 

 

 Although most gear head motors are reversible, this is not true of all gear head motors 

and you should check for reversibility in the motor specifications.  All motors have a large 

number of parameters that completely specify their operation.  Many of these will not be of high 

interest to us.  For instance, a motor’s rotational inertia is rarely of concern for our applications.  

The most important parameters of interest for us are motor speed, torque and voltage rating.  

Here’s an example of a reseller’s ad for a surplus Globe motor (Photo 1) that we will examine in 

more detail later: 

24 Vdc, 85RPM Gearmotor w/Shaft Encoder 

Globe Motor #415A374.  Powerful little gearhead motor.  85 RPM @ 24 Vdc @ 0.150 Amps (no 

load).  Normal rated load, 80 oz.in. @ 63 RPM @ 0.58 amps.  Works fine at lower voltages.  

0.25 diameter flatted shaft is 0.75” long.  Overall length 3.5” not including shaft.  1.2” diameter 

Copyright (c) 2008 by John Piccirillo                                                 4 
 



DRAFT 
 

motor.  1.37 diameter gearhead.  Three mounting holes (4-40 thread) on motor face, equally 

spaced on 1.052” diameter bolt circle.  12” wire leads.  Encoder information:  Red lead – Vcc 

(24 Vdc Max), Black lead – ground, Blue lead – Channel A.  2 cycles per revolution.  Output: 

Current sinking (no pull up resistor inside encoder.)   

 This is the kind of information we like to see.  We know the model number, the no load 

motor speed as well as the motor speed and torque at some point on the operating curve (more 

about that later), the current consumption, the size, details of the mounting, and the encoder, 

which can be used to tell us the actual speed of 

the motor. 
Photo 1.  Globe Motor #415A374 

Before we delve further into motors and 

wheels, we need to quantitatively examine the 

locomotion requirements.  The robot’s operating 

niche informs us of the locomotion requirements, 

usually speed and torque. 

  

Setting Motor Performance Requirements 

A mobile robot goes somewhere, some how.  Is it indoors or outdoors, is the terrain level, is 

high speed desirable, are there obstacles, is precise movement necessary?  We must ask 

ourselves these and other questions in designing the robot locomotion platform.  To begin the 

basic mobility platform we need to decide on the overall size.  The motors, wheels and batteries 

constitute most of the robot bulk and weight.  In order to put these units together, we need to 

scrutinize the contest rules, add in our strategic approach, and derive the platform requirements.  

The two most basic requirements for robot drive motors are rotation speed (some times called 

angular velocity) and torque.   

 We all know what speed is.  For motors we measure rotational speed, how fast the shaft 

rotates in revolutions per minute (RPM), degrees or radians per second being a less common 

measurement unit.  But what is the turning force called torque, how do we measure it, and how 

do we find out how much our motors need ?  There are many things that can create a force.  An 

objects weight is the force of gravity acting on it.  Common forces arise from mechanical, 

electrical and magnetic effects.  A stretched or compressed spring exerts an elastic force.   
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Electrical current moving through a magnetic field generates the force that makes PMDC motors 

turn.  Forces are used to accelerate objects (change their speed or direction).  A force acting on a 

lever generates a torque around the pivot point.  More force or a longer lever arm generates more 

torque.  Just as force can be used to change the linear speed of an object, torque can be used to 

change rotational speed. 

 Motor torque turns the robot wheels and propels the robot.   The robot ground speed will 

depend on how fast the motor shaft rotates and the diameter of the wheels.  If the wheels are not 

directly mounted on the motor shaft, then there 

may also be a gear ratio between the motor shaft 

and wheel axle that needs to be considered.  For 

gear head motors, the motor specs take into 

account the gearing ratio in the gear box that 

comes attached to the motor.  How fast a motor  

turns for a given input voltage depends on its 

load.  A free spinning motor, termed a “no load” 

condition, will rotate faster than a “loaded” 

motor, one that has to perform work.  A heavy 

robot or one going up an incline imposes more 

work on the motor.  The more work the motor has 

to do, the slower it turns, and the more electrical current it consumes.  As the load is increased, 

eventually the motor will stop turning or “stall”.  A prolonged stall can be very bad for a motor.  

The motor will be using a maximum amount of current and may over heat, possibly damaging or 

destroying the motor.  The major variables that determine motor speed and torque are the robot 

weight, the terrain, and  the robot speed requirements.  In Part III, we will analyze several robot 

contests and robots that were built for them.  For now we want to emphasize, once again, that the 

motor specs must be derived from the contest environment and the robot task.   

Changing Gear Ratios 
 
If  the wheel is attached directly to the 
gear head motor shaft,  
 then the wheel and motor angular 
           speeds are the same. 
 
If you add additional gearing, 
 then  
      wheel speed    =  motor speed / G 
      wheel torque  =  G x motor torque  
      G = gear ratio  
          = output teeth / input teeth 
 
 Larger output gear gives slower more 
“torquey” robot

There are many different types of contest playing fields, which necessitate different 

motors.  Some playing fields have long stretches, some require a lot of maneuvering, some have 

lots of stop and go stations, some follow curving paths from point-to-point, etc.  For contests that 

involves a lot of short runs, the following of a curving path, or a constant change in direction, the 

primary challenge is one of control.  As a first estimate of how fast the robot must go, consider 
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the length of the course and the time limit.  This gives an average speed just to finish the course.  

You may want to double this speed as a first goal and pick the motor speed and wheel size 

accordingly.  Since most motors will run at a fraction of their no load speed, you can start slowly 

and build up.   

It is much more common for a contest to have straight runs or open fields for the robot to 

roam and explore, and we will therefore expend a considerable effort into estimating the motor 

torque needed to give our robot a commanding presence on the playing field.  If the robot is 

traveling over level terrain, then the torque just needs to accelerate the robot from a dead stop to 

its “cruising” speed in a short time.  Since most contest arenas are of limited extent, we have to 

make allowances for the robot to speed up, slow down, turn, do something, speed up again,  etc. 

many times during the course of the event.  Inclined surfaces, bumps, a small step or playing 

surface irregularities require extra oomph to overcome. 

In the  next several pages we will go through the procedure of matching performance 

requirements and motor specifications in some detail.  This material will use some basic physics 

and algebra.  If you are not familiar with these concepts, I suggest you hang in there and get as 

much as you can from the discussion.  The specific examples in Part III will illustrate the motor 

selection process. 

 

 Motor Speed 
 In this  section, we will take a detailed look at the basic relationships between motor 

speed, wheel size, robot speed and robot performance.  This is the first step in giving us the 

ability to specify and choose motors based on robot performance objectives.  Since the speed 

requirement is easier to estimate, we begin there.  Most contests either have a time limit, use 

speed directly in the scoring or as a tie breaker.  The minimum speed requirement can be derived 

from the contest rules: the size of the playing field, how much of it has to be traversed, the time 

limit, and the tasks that have to be performed.  If the contest has been run in the past, we may be 

able to ascertain how previous contestants performed and use that information to set a speed 

objective.  As the speed of a robot increases, so does the difficulty in controlling it.  Thus, we 

usually start with the initial goal speed in the testing phase and gradually increase it until the 

robot performance reaches its limit. 
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 We begin with the relationship between robot speed, motor speed, and wheel size.  The 

basic equation relating robot speed to motor angular speed is: 

 

     V  =  ω x R     equation 1 

where 

V  is the robot speed in inches/sec 

ω  is the motor angular speed (how fast the shaft turns) in radians/sec 

R  is the wheel radius in inches 

 

If the wheel is not directly mounted to the motor shaft, then ω is the wheel angular speed, 

the rotation rate of the motor modified by any gearing interposed between the motor and the 

wheel (see the inset box on page 6).  Choosing practical units, the relationship between wheel 

size, motor speed, and robot speed is: 

 

     V =  ω x D / 19.1    equation 2 

where: 

V = robot speed in inches/sec 

ω = motor speed in revolutions/minute (RPM) 

D = wheel diameter in inches 

19.1 is a conversion factor to make the units consistent 

 

We can turn this equation around to calculate a required motor speed given a desired robot speed 

and wheel diameter, or we can calculate a wheel diameter to provide a desired robot speed from 

a given motor speed.  These relationships, using the same units of rev/minute and inches, are: 

 

     ω  =  19.1 x V / D                      equation 3 

     D  =  19.1 x V / ω                      equation 4 
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Speed Requirements 

Now we address how to pick a motor speed from the contest description and our 

performance goal.  The contest arena will have certain runs over which the robot is free to move.  

Let’s consider two circumstances to illustrate the process, which can then be adapted to other 

situations. 

First consider a contest that has taken place before.  An excellent example is the Trinity 

College Home Robot Firefighting contest (http://www.trincoll.edu/events/robot/).  This contest 

distributes videos of past events.  From these we can time the various robots shown to estimate 

their speeds.  This tells us that the observed speeds are doable and a competitive robot will 

probably have to be at least as fast.  Let’s say the average speed of a suitable competitor is Vold 

and we want to go faster by some factor f.  Then our average speed requirement is simply 

 

     Vavg  =  f xVold 
 

And our motor speed requirement is: 

 

ω = 19.1 x f x Vold/D                                            equation 5 

 

 Second, for new contests, or ones on which we have no knowledge of prior competitions, 

we can choose an average speed from a knowledge of the course the robot follows and the 

contest time limit.  This is the minimum speed needed to finish on time, so we will choose a 

speed that is a factor f larger.  How much larger depends on how realistically the contest time 

limit was set and your robot building experience.  A factor of two or three is not outrageous.  A 

given motor’s speed is adjustable over a large range, and changing wheel diameters can help 

also, so the initial choice is not crucial. 

 Let’s examine picking an average speed for a contest in more detail.  Average speed is 

just the distance traveled, X, divided by the time taken, T.  Choose a distance appropriate to the 

contest.  Perhaps one of the longer runs, or the distance between objectives, or the whole field if 

the rules permit.  The motor will accelerate over part of the range, S, during which the robot goes 

from zero to some cruising speed, VC.  For loads that are not too great, a motor will achieve a 

steady speed and torque over a short distance, S (we will show how to calculate this in detail 
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later on).  The situation is illustrated in Figure 1.  The time T is divided into two parts, T1, time 

of the acceleration over distance S, and T2, the time spend cruising at speed VC.   Then the 

average speed is: 

 

    Vavg  =  X / T  =  X / (T1  +  T2)       equation 6 

 where 

X is the total distance traveled 

T1 is the acceleration time 

T2 is the cruising time  

 

The motor 

speed goes from zero 

when the motor first 

starts to its cruising 

speed, VC, at time T1.  

We will assume that the 

average speed over S is 

VC /2, and the average 

speed over the 

remainder of the distance, X – S, is the constant cruising speed VC.  The corresponding times are 

the respective distances divided by their speeds, or  

  Acceleration             Cruising Distance 
   Distance (S)                     (X – S) 
0                  VC                                              VC        Speed 
 
0                     T1                                      (T1 + T2)     Time 

 
Average Speed = X/ (T1 + T2) 

VA = X/[ VC/2  +  (X – S)/ VC] 

VC  = (1 + S/X) x VA 
 

Figure 1.  Calculation of Average Speed 

 

   T1  =  S / (VC /2)     and     T2  =  (X – S) / VC   equations 7 

 

Substituting the times from equations 7 into equation 6, 

 

     Vavg  =  X / [S / (VC /2)   +  (X – S) / VC]   

=  VC x X / (X + S)  =  VC / (1 + S/X)       equation 8 

 

Solving for the cruising speed, 
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    VC  =  (1 + S/X) x Vavg         equation 9 

where 

VC is the robot cruising speed in inches/sec 

S is the acceleration distance 

X is the cruising distance 

Vavg is the average desired speed 

 

The motor cruising speed rating appropriate to the task, from equation 3, is 

 

ωC  =  19.1 x (1 + S/X) x  Vavg / D                       equation 10 

 

where 

ω  is the cruising motor speed in revolutions/minute (RPM) 

Vavg is the average desired speed in inches/sec 

D is the wheel diameter in inches  

S is the acceleration distance 

X is the cruising distance 

 

Motor Torque 
To pick an appropriate motor, we need to know how strong it is in addition to how fast it 

turns.  The measure of “strength” we want is the motor torque, the motor’s ability to push the 

robot along.  Estimating the required torque is more difficult than estimating the necessary motor 

speed.  Before we get into calculating motor torque from performance requirements, let’s make 

some estimates of the minimum and maximum useable torque.   

 

Frictional Forces   

 Friction determines the minimum force required to move a robot from a dead stop and 

this determines the minimum motor torque required to move a robot at all.  Friction is a force 

than opposes the motion between two surfaces in contact with one another.  It always acts in a 
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direction opposite to the motion.  The amount of force that it takes to begin sliding depends on 

static friction.  Once the sliding begins, the frictional force decreases slightly and is called 

dynamic friction.  For the most part, our robots experience a third type of friction called rolling  

friction or more commonly rolling resistance, which is considerably smaller than sliding friction.  

Rolling resistance is caused by the deformation of the tire and surface, and depends on the tire 

and surface materials.  For any type of friction, the coefficient of friction is the ratio of the 

frictional force to the weight pressing on the surface, called the normal (or perpendicular) force, 

see Figure 2.   

 

     C  =  Ff / FN     equation 11 

where 

C  is the coefficient of friction 

Ff  is the frictional force to begin motion 

FN is the normal force 

 

 On a level playing surface, the normal 

force is just the robot weight, W.   In order to 

propel the robot, the motor torque must at a 

minimum overcome the external torque of the 

friction force acting on the radius of the wheel.  Thus the minimum required motor torque is: 

Figure 2.  Frictional Forces Diagram 

 

         T  =  Ff x R  =  C x FN x R  =  C x W x R 
Converting units, 

 

T  =  8 x C x W x D      equation 12 

 

where: 

T is the torque in oz-in 

C is the coefficient of friction 

W is the weight in lbs 

D is the wheel diameter in inches 
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We must be careful to distinguish rolling friction, CR, from static friction, CS.  Typically, rolling 

resistance varies from 0.001 for steel on steel to 0.030 for a bus on asphalt.  While the coefficient 

of rolling friction is usually very low, the coefficient for static friction can be quite large, even 

greater than 1.  As an example, for a CR = 0.03, the minimum torque to move a 10 lb robot with 

3 inch diameter wheels would be: 

 

   T  =  8 x 0.03 x 10 lbf x 3 in  =  7.2 oz-in 
 

This is a pretty puny motor but should just keep a robot rolling.  Because of various 

inefficiencies in all the components, we’d use two of these small motors to propel our robot, but 

this would still be the bare minimum.  The robot should cruise fine but will take a long time to 

come up to speed and any surface irregularity could cause it to stall. 

 Another illustrative calculation is the maximum useable torque for acceleration.  This 

would be the torque that causes the wheels to exert a force in excess of that supported by static 

friction, resulting in wheel slippage.  Making a similar calculation as above but using a 

coefficient of static friction equal to 0.7, the maximum torque before slipping is 

 

   T  =  8 x 0.7 x 10 lbf x 3 in  =  168 oz-in 
 

Even a pair of hefty 80 oz-in motors used at full capacity would still be marginally safe.  

Between these two extremes, 7.2 oz-in and 168 oz-in, lies a wide choice in motor torque values. 

One method for measuring the coefficient of static friction is to use a small weighing 

scale to find the force necessary to just drag the robot along a flat surface.  The robot wheels 

must be locked in place, tapping them together or to the chassis works well.  Then dividing the 

dragging force by the robot weight gives an approximate value of the coefficient of static 

friction.  In the section below on playing fields with inclined planes, we’ll give another 

experimental method for finding the coefficient of static friction.   

Although we want to know how to estimate the motor torque necessary to achieve our 

cruising speed, these friction limits give us useful boundaries.  Now it’s time to turn to the most 

common type of playing field.   
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Level Playing Fields 

 On a level playing field we are primarily concerned with the torque needed to overcome 

the robot’s inertia (i.e. mass) in order to accelerate it to a desired speed.  This is a little messy to 

calculate.  We will go over the basics for those who are interested and conclude with some 

practical guidelines.  How fast a robot changes its speed is called acceleration and it depends on 

the net driving force and the weight of the robot, given that the acceleration is not so great that 

the wheels lose traction and slip.  On smooth or slick surfaces especially, the acceleration may be 

limited by wheel slippage but this is not usually a problem.  If it is, the situation can be remedied 

either with higher traction wheels or by ramping up the robot speed gradually by increasing the 

applied motor voltage in steps. 

 The robot acceleration is given by Newton’s second law of motion: 

 

     F  = m x a     equation 13 

where 

F  is the net accelerating force.   

m is the mass of the object that the force acts on 

a is the resulting acceleration 

The net force is a combination of the force supplied by the motor minus any other forces acting 

on the robot.  For level surfaces, the other force is mostly friction, of one kind or another.  Since 

rolling frictional forces are small, we will neglect them, especially since we will be generous in 

deriving the motor torque requirements.  Playing fields with inclines have significant downhill 

gravity forces and are treated in the next section. 

 Applying equation 13 to the force of gravity: 

 

     W  = m x g     equation 14 

 

where 

W is an objects weight 

m is the object mass 

g is the acceleration caused by gravity 
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 Equation 14 gives us a way to find an object’s mass by weighing it.  Substituting the 

mass from equation 14 into equation 13 gives: 

 

    F  =  1.33 x W x a / g    equation 15 

where 

F is the force in ounces needed to accelerate the robot 

W is the robot weight in pounds 

a is the acceleration in inches/sec-sec 

g is the acceleration of gravity = 32.2 feet/sec-sec 

 

We use this peculiar set of mixed units for the convenience of weighting the robot in pounds, 

measuring force in ounces, and measuring modest accelerations in inches/sec-sec. 

 The force on the playing surface that accelerates the robot is generated by the motor 

torque turning the wheels.  Since torque is equal to force times the lever arm it acts through, the 

required motor torque is simply: 

 

    T  =  F x R  =  F x D / 2   equation  16 

where 

T is the torque in oz-in 

F the force exerted by the motor in ounces 

R the wheel radius in inches 

D the wheel diameter in inches 

 

Finally, substituting the force required to produce an acceleration from equation 15 into torque 

equation 16 and using the value for the acceleration of gravity, we have,  

 

     T  =  D x W x a / 48.4   equation 17 

where 

T is the motor torque in oz-in 

D is the wheel diameter in inches 

W is the robot weight in pounds 
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a is the robot acceleration in inches/sec-sec 

 

Equation 17 confirms what we expect from common sense.  It takes more torque to move a robot 

that is heavier and/ or has bigger wheels.  Now we can estimate how much motor torque is 

needed once we know the robot’s weight, wheel diameter and the desired acceleration.  

 

Acceleration  

 Acceleration changes the robot speed, so finding the needed acceleration amounts to 

deciding how much time it takes the robot to go from a dead stop to some cruising speed.  

Decelerating the robot is usually not an issue.   There are several effective decelerating options 

available.  Just cutting the power makes the robot work against the motor gear ratio, which is a 

pretty good brake.  For emergencies, one can throw the robot into reverse for a very brief time.  

While this is effective, it’s not recommended, since, for one thing, it’s very hard on the gears.  A 

third option, dynamic braking,  is possible with some electronic speed controls. 

Now onto estimating the required motor torque.  Knowing a speed either from the contest 

arena set-up, or from competitors we wish to better, we can make a logical determination of the 

motor torque needed to accomplish the task. 

 There is a standard kinematic equation that relates the cruising speed, VC, attained by a 

constant acceleration from a stop, a, over an acceleration distance, S.  Namely 

 

   V2
C   =  2 x a x S    or   a  =  V2

C / 2 x S  equation 18 

 

At last, we can express the acceleration in terms that we can measure and experiment with.  

Substituting VC from equation 16, 

 

   a  =  [(1 + S/X)  x Vavg]2
 / 2 x S    equation 19 

 

We can simplify equation 19 by substituting [(1 + S/X) x Vavg] from equation 10 into equation 
19, 
 

   a  =  [ωC x D / 19.1 ]2 / 2 x S    equation 20 
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With the acceleration finally in hand, we return to equation 17  

 

    T  =  W x D x a / 48.4               

 

to find the motor torque required to produce this acceleration.  Substituting the acceleration from 

equation 20 into equation 17,  

   T  =  [ωC x D / 19.1 ]2 x W x D /96.8 x S 

 

   T  =  ωC
2 x D3 x W / 35,314 x S    equation 21 

where 

T is the torque is oz-in 

ωC is the motor speed in rev/min at cruising speed VC 

D is the wheel diameter in inches 

W is the robot weight in pounds 

S is the acceleration distance in inches 

 

Equation 21 is very instructive.  Here we see how the torque is related to the fundamental 

parameters of robot weight, wheel size, motor speed, and also to acceleration distance.   Equation 

21 gives the constant torque needed to accelerate to cruising speed in a distance S.  The torque in 

equation 21 is an average torque over the acceleration distance, which is usually short.  Looking 

at equation 21 you may be concerned about how to choose S.  For now we are using the playing 

field description and a robot navigation strategy to develop motor requirements.  In Part III we 

will use the behavior of PMDC motors to find out how to calculate S and how to determine what 

a motor can deliver.  We will also illustrate these techniques with several worked examples.  For 

now, we turn to a different type of playing field. 

 

Playing Fields with Inclines 

 Figure 3 illustrates the situation for a robot on an inclined plane.  Part of the weight of the 

robot presses it against the surface, called the normal force FN, and part is directed down hill, 

called the tangential force FT.  As common experience tells us, the steeper the incline, the harder 
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it is to drive the robot up hill.  For those not familiar with vectors and trigonometry we give the 

results here and explain how to use the results 

later. 

The force to maintain a robot’s position 

on an incline or to move the robot uphill at 

constant speed, is simply equal to the portion of 

its weight directed downhill, that is the tangential 

force, 
Figure 3.  Gravitational Forces For A  
                Robot On An Incline 

   

FT  =  16 x W x sin (θ)                                            equation 22               

where 

FT is the force in oz 

W is the robot weight in pounds 

θ (theta) is the inclination angle (tilt) of the surface 

Sin () is a trigonometric function (pronounced “sign”) 

 

The force pressing on the incline is equal to the portion of the robot’s weight against the 

plane, the normal force, 

    FN = 16 x W x cos(θ) 
where 

FN is the force in oz 

W is the robot weight in pounds 

θ (theta) is the inclination angle 

Cos () is a trigonometric function (pronounced “co-sign”) 

 

When the gravitational tangential force pulling the robot down the incline exceeds the 

static friction force, fS, sliding will occur.  As the steepness of the incline increases from zero, a 

point will be reached when the forces are in balance.  That is when, 

 

     fS  =  FT 
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As the slope increases further, the robot will begin to slide.  Since the coefficient of sliding 

friction is less than the coefficient of static friction, the robot continues to slide.  Using equation 

11, we can calculate the coefficient of static friction, CS, from the slope when the robot begins to 

slide. 

 

CS =  16 x W x sin (θ) / 16 x W x cos(θ) 
 

        CS  =  tan(θ)                 equation 23 

where 

CS is the coefficient of static friction 

θ  is the inclination angle 

Tan () is a trigonometric function (pronounced “tangent”) 

 

The procedure for measuring CS is fairly simple.  You lock the wheels of the robot (taping them 

together works) so they cannot turn, place it on an inclined surface (of the same material as the 

contest playing field) and gradually raise one end, increasing the inclination angle until the robot 

begins to slide down hill.  Then the downward acting weight of the robot is just enough to 

overcome the restraining frictional force (this method doesn’t work well for rolling friction since 

the wheels are restrained from moving freely by motor and gears).  The various trigonometric 

functions such as sin, cos and tan can be found in mathematical tables or is easily obtained from 

a scientific pocket calculator.  The Windows operating system for PC’s also has a calculator 

under the Accessories programs accessible form the Start menu – 

Start/Programs/Accessories/Calculator.  Choose the Scientific mode. 

To find the torque needed to overcome the pull of gravity down the incline, we simply 

multiply the tangential force, equation 22, by the wheel radius. 

 

               T  =  8 x W x D x sin (θ)               equation 24 

where 

T is the motor torque in oz-in 
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W is the robot weight in pounds 

D is the wheel diameter in inches 

θ is the inclination angle 

 

To propel the robot uphill, you will need to provide enough additional torque to 

overcome forces and inefficiencies not included in this simple treatment.  Starting on an incline 

with too much torque may result in wheel slippage since the normal force, FN = 16 x W x cos(θ), 

decreases as the slope increases, thereby lessening the static frictional force that keeps the wheels 

from skidding. 

 Now we have all the information and relationships we need to set the motor requirements 

from a description of the robot’s niche – environment and task.  Next we need to know more 

about PMDC motors.  Specifically, we need quantitative relationships between the motor speed, 

torque, and current. 

 

PART II.   PMDC Motor Operation and Specification 

 Operation 
 The basic physics that governs the operation of an electric motor was discovered by Hans 

Christian Oersted in 1820 when he noticed that a current in a wire deflects a magnetic compass 

needle.  The current carrying wire produced a mechanical force on the compass needle.  In a 

PMDC motor, a coil of wire is wrapped around a rotating spindle called the armature, which is 

surrounded by a permanent magnet split into north and south poles on either side, Photo 2.  

When current is passed through the armature windings, a force is produced in the wire and 

thence to the armature, which causes it to turn in the stationary magnetic field.  In order to keep 

the armature turning, the current must change directions as the one side of the windings pass 

from the north to south magnetic poles (or vice versa).  This is done by splitting the winding into 

many parts, each of which is connected to an electrically isolated metal bands at one end of the 

armature.  These bands, together with stationary “brushes” that are spring loaded to ride on the 

bands, form a rotating switch called a commutator.  As the armature and commutator turn, the 

current in the individual wire coils changes direction as each coil changes from one magnetic 

pole to the other.  Thus a continuous force keeps the motor turning in the same direction. 
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When a motor is first turned on, the shaft is not rotating and the motor is at its stall point.  

It  momentarily draws stall current, is, with 

stall torque, Ts.    As the motor begins to 

turn, the motor speed increases, the current 

decreases, and the torque decreases as the 

motor approaches its equilibrium operating 

point, (ip, Tp, ωp).  The equilibrium point is 

that at which the motor output torque is 

equal to the load on the motor shaft.  For our 

robots this load is created by rolling friction, 

uphill travel, or other forces, e.g. pushing 

something  

 It is useful to consider some relationships between motor torque, speed, and current 

consumption.  As a rule, we will not be concerned with power consumption or efficiency since 

contest time limits are usually too short for this to be a concern. 

A motor with no external load (zero torque), operating at its nominal rated voltage, will 

spin at its maximum rate, the no load speed ωo.  At the other extreme, there is some external load 

that will exceed the maximum torque the motor is capable of and the motor will stall.  In 

between these extremes the motor speed is a linear function of its torque, that is, as the load 

torque increases, the angular speed decreases.  The relationship, illustrated in Figure 4, is: 

 

     ω   =  ωο x (1 – T/Ts)   equation 25 

or equivalently, 

     T  =  Ts x (1 - ω/ωο)    equation 26 

where 
ω is the angular speed 
ωo is the no load speed 
Ts is the stall torque 
T is the torque at ω 
 
 

Commutator 

Brushes 

Armature 

Motor 
Shaft 

Permanent 
Magnets 

Photo 2.  Globe Motor Disassembled 
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Figure 4.   There is a linear relationship between a motor’s torque and speed, and between 
its torque and current.  A free running motor, no external load, has a no load speed ωo, its 
maximum turning rate, and draws a no load current of io.   As an external load, Tp, is applied,  
the motor slows down and draws more current, ip, as it adjusts its output torque, Tp, to meet  
the load.  If the load is not too great, the motor will continue to run at a new, lower speed, ωp. 
If the motor cannot overcome the load, it will stall, that is cease to turn, and draw a stall current, 
is, determined by the resistance of its windings.  A stall occurs when the imposed, external  
torque is equal to or greater than the motor’s stall torque, Ts.  As the voltage applied to a motor 
increases, the operating lines shift upward, increasing the no load speed and the stall torque 

 

As the motor operates with increasing load, the current consumption also goes up.  The 

current draw is also a linear function of torque.  It starts with a no load value io and increases to 

some maximum at motor stall.  The appropriate relation, also illustrated in Figure 4, is: 

 

    i  = io + (is – io) x T / Ts     equation 27 

where 

i is the motor current 

io is the no load current 

is  and Ts are the stall current and torque  
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T is the torque at current i 

 

Suppliers may say that a motor is “hefty”, “good for robotics”, or some other qualitative 

statement.  This is insufficient information and should be viewed with considerable skepticism.  

The minimum information we need to intelligently choose a motor, is the operating voltage and  

no load speed together with a stall torque or a speed at some specified torque.  Information about 

the current consumption is also handy.  Let’s work a specific example. 

For the Globe motor described in Part I, we can use equation 26 to find the stall torque, 

Ts.  Rearranging terms and substituting the known speed and torque values, 

 
  Ts  =  ωo x T / (ωo - ω)  =  85 x 80 / (85 - 63)  =  309 oz-in 
 
That’s a lot of torque, however, the motor is not spinning!  Now that we know  Tstall, we can 

calculate any motor speed for a specified torque, or a torque for some desired motor speed.  

Substituting the stall torque and operating current values into equation 27, we can find the stall 

current. 

     istall  =  (is – io) x Tstall / Ts  +  io  =  (0.58 – 0.15) x 309 / 80  +  0.15  =  1.81 amp 
 

How does this compare with reality?  With the actual motor in hand, I ran two checks, one by 

using Ohm’s law, and another by measuring the stall current directly.  Using a multimeter we can 

measure the motor coil resistance.  For the Globe motor it’s 13.7 ohms.   Ohm’s law gives: 

 

   I  =  V / R  = 24 / 13.7  =  1.75 amp 
 

To measure the stall current directly, I put the motor in a vise and held the shaft with a pair of 

locking pliers to prevent it from turning.  Applying 24 volts from a battery supply and measuring 

the current with a multimeter gave a stall current of 1.75 amps.   This measurement is consistent 

with the Ohm’s law calculation.  The difference between the two measurements and the 

calculation based on stall torque, is minor, about 3%, and is due to the expected variation in 

motor-to-motor specs.   

 One further note, the operating point given in summary motor specifications is usually 

around the maximum efficiency point.  This is very roughly at from 70 to 80 % of the no load 
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speed and from 20 to 30% of the stall torque.  From the above numbers, the 63 RPM, 80 oz-in 

torque point lies at 63/85 = 74 % of the no load speed and at 80/309 = 26% of the stall torque.  

The maximum power delivery of a motor is at one half the no load speed, which is also at on half 

of the stall torque and one half the stall current. 

 

Gear Head  Motor Specifications 
 Generally I look for certain minimum specs before purchasing a motor, allowing plenty 

of margin to accommodate a developing platform.  The minimum specs I like to see are voltage 

rating, no load motor speed,  motor speed at some specified torque value, and current draw.  If 

you know the motor manufacturer and motor model number, you may be able to find the 

manufacturer’s original specs on-line through one of the commonly available Internet search 

engines. 

 

1.  Voltage Rating.  Although motors come with a large variety of operating voltages, we need 

to choose one that corresponds to the batteries we will be using.  There is more variety and 

availability in 12 and 24 volt motors, and these are also very convenient for use with standard 

battery packs and are the right physical size for robots measuring from eight to 16 inches in 

overall size.  For the larger robots, say 16 inches or so in diameter, you will probably use sealed 

lead acid batteries, since these have a lot of capacity for driving heavy robots.  For smaller 

robots, from 8 to 12 inches in diameter, NiMH batteries are often used.  In addition to the 

standard AA, C and D sizes, these come in convenient, pre-made battery packs of from 3.6 to 48 

volts.  Battery packs made for remote controlled cars come in 7.2, 8.4, and 9.6 volt packages that 

are widely available and convenient to use.  For 12 v. motors I use either a couple of 7.2 or 8.4 

volt, or a single 9.6 volt pack, depending on whether or not the motor will be used up to, below, 

or above its rated voltage.  For 24 v. motors, I use three of the 9.6 volt packs in series.  However, 

you should feel free to use any combination of battery types or custom packs available and 

convenient. 

  

2.  Motor Speed.  As mentioned before, for a given applied voltage, ω varies with the motor 

load.  As the load on the motor increases, the current draw increases, and ω decreases.  
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Changing the voltage shifts the motor operating curve as shown in Figure 4.  This is the primary 

method used to control the speed of a robot.  As the applied voltage is lowered, the speed vs. 

torque curve is lowered proportionally.  The motor speed rating we are interested in is the value 

at the torque we need.   We can calculate a (motor speed, torque) point from the motor specs, but 

where do we begin, with the RPM or the torque?  In Part III we give a procedure that starts with 

some assumptions and then iterates based on the available surplus motors.  The speed we are 

really interested in is that of the robot and, as have seen, the robot speed depends on the wheel 

diameter.  As a rough estimate, wheel diameters will be in the range of two to eight inches, 

depending in part on the overall size of the robot, and the no load motor speed will be in the 

range of 40 to a few hundred RPM. 

  

3.  Torque.  The motor torque, acting through the wheels on the playing field, determines how 

fast a robot can accelerate, how steep an incline it can climb, how much load it can carry, or with 

what force it can push or pull.  For good measure we generally oversize the motor torque to 

allow for unknowns that arise as the robot platform develops, especially for an inevitable 

increase in the robot weight, and for an increase in performance as we push the design.  After 

making a best estimate torque estimate, I always double it, although a 50% increase is probably 

sufficient.  How much torque an individual motor needs depends in part on how many drive 

motors the robot uses.  Typically there are two independent motors in most robot drive 

configurations.  If a dual drive motor platform needs, for instance, 60 oz-in of torque, then two 

such motors gives the needed reserve torque with gusto.  Other drive configurations may use one 

or four motors and we can scale the total platform torque accordingly 

 

4.  Current Draw 

 The motor voltage times the current it uses equals the power the motor consumes.  The 

torque times the rotational velocity the motor produces is the power the motor supplies.  As the 

load on the motor increases at a given operating voltage, the motor slows down.  This allows it to 

draw more current and thereby increase the output torque to meet the challenge of the increased 

load.  Looking at motor specs, we can usually judge if a motor is too big or small for our 

application by looking at the current draw.  If the motor only demands 0.01 amps at no load, it’s 

too small for most robot applications.  On the other hand, if the idling current draw is 1 amp, it’s 
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probably too big.  The amount of current a motor uses will determine how long it can operate 

before draining the batteries. 

 

5.  Physical Measurements 

 Most contests have a specific rule on maximum allowable robot size.  Even if there were 

no rule limitation, there are always practical limitations.  This size limitation imposes a limit on 

the size motor we can use.  It has to physically fit on the platform.  Many robots use two motors 

that are placed opposite each other on the platform.  If the platform is eight inches across, the 

max size of the motor is 4 inches long, including the motor shaft.  In practice, there is also the 

wheel thickness to consider and some space between the back of the motors may be needed to 

connect the power.  Motors with encoders are longer than those without.  All this needs to be 

taken into account.  In addition, the shaft may come in a size that makes it difficult to mount a 

wheel.  Take note that some motors have English and some metric sized shafts and mounting 

screw sizes. 

 

6.  Special Features 

 Several times we have mentioned motor encoders without describing them.  Motor 

encoders indicate how many times a motor shaft turns.   The encoding unit is usually attached to 

the back of the motor where an extension of the motor shaft turns inside the encoder generating a 

signal that can be used to indicate the motor speed.  The most common types of encoders use an 

optical or magnetic sensor to measure the shaft rotation.  The encoder has a separate, usually 

lower, voltage connection and generates a series of pulses that can be counted with a 

microcontroller or special circuit.  An important encoder spec is its resolution or how many 

pulses it generates for each turn of the motor shaft.   Motors may come with other goodies that 

may or may not be useful.  Some of these are brakes, clutches, right angle gear heads, special 

mounting brackets, or output shafts on both sides of the motor. 

 

PART III.   Motor Selection Procedure and Examples 
Now we are ready to develop a procedure for selecting motors for particular applications.  

We will use the contest description and our performance goal to estimate the motor 

characteristics needed and then choose a motor and use its actual specifications to check whether 
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it is adequate.  If not, we will adjust our estimate and look for a different motor or use a different 

strategy.  The general procedure is given below. 

 

Procedure 
STEP 1.  Motor Requirements.  From the playing field layout and the contest rules, we find the 

motor speed and torque to meet our speed goal.  To do this we need to pick an initial wheel size 

and guess at an acceleration distance.  We can refine these picks later if need be.  The motor 

rotation speed to achieve the cruising speed we desire is given by equation 10: 

 

ω  =  19.1 x (1 + S/R) x  Vavg / D 
 

The torque required to accelerate to the cruising speed is given by equation 21, 

 

Tacceleration  =  ω2 x D3 x W / 35,314 x S 

 

In the case of inclined playing fields, this acceleration torque is added to the station holding 

torque is given by equation 24: 

 

Tincline  =  8 x W x D x sin (θ) 
 

STEP 2.  Motor Specifications.  Now we search for a motor with the speed and torque 

requirements determined by the equations in Step 1 and note its published specifications.  From 

equations 25, 26, and 27, which we will refer to as the motor equations, we can rearrange terms 

as necessary to convert the specifications for available motors to their actual values of motor 

speed and torque. 

MOTOR EQUATONS 

ω   =  ωο x (1 – T/Ts) 

T  =  Ts x (1 - ω/ωο) 

i  = io + (is – io) x T / Ts 
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STEP 3.  Motor Operation Point.  The  cruising operating point for level playing fields is,  from 

equation 12: 

 

Tp =  8 x C x D x W 

 

For rolling friction, the value of Cr  is difficult to determine, however, from published tables for 

many materials on many surfaces, we will choose a value of  Cr  =  0.03.  For static or dynamic 

(sliding) friction, we will use values measured for a particular robot on the surface of interest.   

For inclined playing fields, we add to the above, from equation 24, the torque to maintain 

a position on an incline, 

 

Tp  =  8 x W x D x sin (θ) 
 

The rotational speed that corresponds to the cruising equilibrium torque is, from equation 25: 

 

ωp  =  ωο x ( 1 -  Tp/ Τstall)                           equation 28 

 

Since the torque for cruising, Tp, is much less than that needed for acceleration, the motor will 

have no difficulty achieving it. 

  

STEP 4.  Cruising Speed.  The robot cruising speed at the equilibrium point may be found from 

equation 2: 

 

                                            V =  ωp x D / 19.1                                        equation 2 

 

Check that this speed corresponds, at a minimum, with the average speed, Vavg, in Step 1. 

 

STEP 5.  Acceleration Distance.  In Part I we put off a discussion of estimating the acceleration 

distance, S.  It’s now time to address this.  The distance the robot travels from a dead stop to its 
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cruising speed is a complicated function of several variables.  The derivation involves some 

calculus and is given in Appendix I.  Here we state the results: 

 

S  =  (W x D3 x ωο
2) / (17,600*Ts) x {Ln[1/(1 – ωp/ωο) – ωp/ωο]}         equation 29 

 

Equation 29 takes into account the way in which speed and torque change as a motor goes from 

zero to its cruising speed.  Although it appears daunting, we will show its use and utility in the 

following examples. 

 If the value of S computed in equation 29 is close to or less than the value used in Step 1, 

we are finished with the motor selection procedure.  If not, we can refine our calculations 

beginning over with Step 1 and the new value of S.  The same motor may still be adequate, or we 

may need to choose a different motor. 

 

Examples 
Finally it’s time to work a few motor selection examples for gear head motors.  To make 

the exercise interesting and robust, we’ll look at three very different robots that were designed, 

built, tested, and entered into contests.  The first robot travels on a level playing field, the second 

on a playing field with steep ramps, and the third robot is confined to travel along a rail. 

 

Example 1 -  Phoenix: A High Torque, High-Speed Robot 

 In the Spring of 2000, the southeast division of the Institute of Electrical and Electronic 

Engineers (IEEE) held its annual conference in Nashville, TN.  IEEE is an international 

association of professional engineers with six divisions in the US.  The southeast division, 

Region 3, holds a robot hardware competition each year at its annual spring convention, 

SoutheastCon (see http://www.southeastcon.com/ for information on past and present 

competitions).  Electrical engineering students at the University of Alabama in Huntsville built a 

robot named Phoenix for this competition.  The name Phoenix was chosen the week before the 

contest, after a late night testing session in which a short circuit burned out the motor control 

electronics.  Photo 3 shows Phoenix on a test playing field.  Each contest round was a dual 

between two robots on the field at the same time.  Each was given twelve, 7/16 inch diameter 

steel balls to drop into the nine cylinders in three minutes.  The scoring value of each cylinder 
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changed dynamically during the contest so that the robot did not know in advance which 

cylinders where worth 200, 100 or just 10 points.  This was determined by a combination of 

flashing LEDs and varying magnetic fields under the cylinders that changed during the course of 

the contest.  Because of this randomness and the symmetry of the playing field, the Phoenix 

robot used a fast sampling strategy that attempted to visit and test as many cylinders as possible 

in three minutes.  As the robot 

visited and docked with each 

cylinder in turn, it made 

measurements to determine the 

scoring points for depositing a 

steel ball.  If the score was high, 

a ball was put into the cylinder; 

if not, the robot visited the next 

cylinder.  At any one time, 

three of the nine cylinders had 

high point values and whenever 

a ball was dropped into one of 

those cylinders, it assumed a low 

value and another, randomly 

chosen, cylinder assumed the previous cylinder’s point value.  Phoenix circled the playing field, 

visiting all nine cylinders in each pass around the table.  

Photo 3.   Phoenix on the SoutheastCon 2000 
                Hardware Competition Playing Field 

 The strategy for a fast robot requires motors with high motor speed and enough torque to 

accelerate quickly.  One of the consequences of high speed is that the robot is more difficult to 

control.  Phoenix made up for this by having a docking bumper.  If the approach to the cylinder 

was not well aligned, the force of the impact assured that the robot bumper would square itself 

with the cylinder.  In practice this worked quite well. 

 The contest rules specified a maximum robot size of 20 x 25 x 30 cm high (just under 8 

by 10 inches and 12 inches high).  This is about what would be chosen anyway given the systems 

the robot needed for the task – an LED detector, a magnetic field detector, a method to find the 

cylinders, and a ball dispenser, in addition to the drive and power systems.  For maneuverability 

the robot would use two drive motors in the common differential drive configuration.  Given the 
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playing field layout and the strategy, the question is, how fast does the robot need to be?  The 

distance around the playing field, from cylinder-to-cylinder, including visiting the central 

cylinder, is about 17 feet.  In one circuit of the field a robot may expect to deposit three to six 

balls, depending on the random placement of the high value cylinders and the operation of the 

opponent.  To conservatively deposit twelve balls would then take maybe four circuits.  We want 

to win so we’ll design for six circuits in three minutes.  Six circuits in three minutes is an average 

speed of 6.8 inches/sec.  However, the robot has to stop to check the cylinder and maybe deposit 

a ball, so that half of the time it won’t be moving at all.  To make up for this, the robot speed 

goal was doubled to 13.6 in/sec.   

 

Step 1.  Motor Requirements.  First we calculate the motor requirements.  Phoenix had a wheel 

diameter of 5 inches.  Picking Vavg = 13.6 in/sec as a goal from the discussion above, we have, 

ignoring the S/R term: 

 

Motor Speed  =  19.1 x Vavg / D  =  19.1 x 13.6 / 5  =  52 RPM 

 

Phoenix weighed about ten pounds with batteries.  To evaluate the torque needed to accelerate to 

Vavg  we are faced with the difficult decision of choosing S.  The distance between cylinders was 

about 20 inches so we picked a very aggressive S = 1 inch.  Whether the S value we pick is 

realistic or not is difficult to determine at this point.  We will return to this choice in Step 5. 

Putting in all the values, we have:  

 

Motor Torque  =  ω2 x D3 x W / 35,314 x S   =  95.7  oz-in 

Motor Requirement:    Torque = 96 oz-in,   Speed = 52 rpm 

 

Step 2.  Motor Specs.  Looking through a lot of surplus motor specs, the motor chosen for 

Phoenix was the Globe motor described in Part I with a no load speed of 85 RPM and a speed of 

63 RPM at 80 oz-in of torque.  From these values we calculate a stall torque of 309 oz-in.  In 

summary, for the Globe motors: 

 

ωο  =  85 rpm,     Ts = 309 oz-in,  Cr  = 0.03,  W = 10 lbs,  D = 5 inches 
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Using the motor equations and the 96 oz-in torque requirement, the Globe motor provides a 

speed of 58 RPM, a very good match to the motor requirement!   

 

Step 3.  Motor Operation Point.  The torque needed to maintain Phoenix’s speed against the 

opposing force of friction is only 12 oz-in.  Note that a much higher torque, 96 oz-in, is required 

to achieve that speed.  The corresponding cruising speed motor speed is 82 RPM.   This is higher 

than the previous estimate of 52 RPM based on the average speed because the low rolling 

friction lets the motor run faster. 

 

Operating Point:  Torque = 12 oz-in,   Speed = 82 rpm 

 

Step 4.  Cruising Speed.  The higher motor speed gives a new cruising speed of 21 inches/sec.  

So, if desired, the Globe motors can exceed the initial speed requirement.  This indicates that 

these motors are sufficient to the task and have plenty of reserve for increased performance. 

 

Step 5.  Acceleration Distance.  Using the torque available for both motors, a stall torque of 309 

oz-in each,  equation 29 gives an acceleration distance  S = 2.8 inches.  Previously we assumed S 

= 1 inch to get a guesstimate at the torque needed.  This calculation shows that the motor chosen 

is capable of meeting and exceeding the speed requirement with an acceleration distance of 2.8 

inches.  In a distance of 2.8 inches Phoenix achieves a speed of 21 inches/sec, for an average 

speed of 18.4 in/sec, which is better than our goal of 13.6 in/sec.  Therefore, we can run it at a 

lower voltage and achieve our original desired average speed.  We can also run it faster, 

however, control will at some point become an issue.  Phoenix didn’t worry about decelerating 

when it reached a cylinder, it just crashed into it.  It’s bumper performed the deceleration.  

Keeping in mind that our assumed coefficient of rolling resistance is a rough estimate, the 

present analysis tells us that our motor choice can do better than we require. 

Being fanatical, Phoenix used two Globe motors, which doubles the available torque.  

Furthermore, a full charge on the batteries gave about 30 volts.  This increases the motor torque 

by about 25%.  Therefore the total torque available with both motors was about 200 oz-in.  Since 
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there is plenty of reserve, the final speed and acceleration can be adjusted by varying the voltage 

applied to the motors. 

When the motors were run at full voltage, the wheels slipped a little.  As a check on the 

maximum useful torque, the coefficient of friction for Phoenix was measured at CS = 0.5.  The 

torque at which we expect wheel slipping is then, from equation 12: 

 

T  =  8 x 0.5 x 10 lb x 5 in  =  200 oz-in 
 

  The torque at which slipping occurs agrees with observation.  This is an amazing 

correspondence, especially considering that the measurement of the friction coefficient is only 

approximate.   Since slipping makes control more difficult, the acceleration was ramped up under 

software control from zero to about 80%  of the max available.  Even though Phoenix didn’t 

need all the available torque to accelerate, it was useful in pushing opponents out of the way.  

Phoenix worked so well and consistently that it won first place among the 34 competing robot 

entries. 

 

Example 2 – WHIZard:  A Fast, Hill Climbing Robot 

 WHIZard was another design class robot (the WHIZard name was supposed to convey 

the idea of a robot that was fast and smart).  It was built for the 2001 SoutheastCon IEEE 

hardware competition, which was held at Clemson University in Clemson, SC.  The four by ten 

foot playing field and the WHIZard robot is shown in Photo 4.  The ramp angle is approximately 

19 degrees.  The goal was to pick up ½ inch diameter steel balls placed in ½ inch deep holes in 

known positions along the playing surface and deposit them in a scoring bin.  There were 15 

balls in all: six on the home field side, worth 10 points each, three on the flat surface between the 

ramps, worth 30 points each, and six on the opponents home side, worth 60 points each.  The 

time limit was five minutes and a maximum wheel diameter of two inches was specified (an very 

unusual requirement for a contest).  There was no limit on how many balls could be stored on the 

robot before depositing them in the scoring bin.  

 

WHIZard’s strategy was to cross the table, pick up as many balls on the opponent’s side as 

possible, store them on the robot, and then return to deposit them in the scoring bin.  In order to 
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prevent the opposing robot from employing the same strategy, WHIZard was designed to be fast 

so that after picking up balls from the opposite end of the 

field, it could return in time to defend its home territory 

from slower opponents.  Now one of the difficulties in 

crossing the ramps is for the robot not to get high ended, 

that is stuck on the chassis as the robot goes over the top of 

the ramp.  The two inch wheel diameter limit is just 

enough to allow the 10 inch 

square WHIZard frame to clear 

the table top when taking the 

plunge over the lip of the ramp.  

To make sure the robot had 

enough traction and drive power, 

a four wheel drive design was 

used.  In retrospect this was 

probably overkill but it had the 

benefit of moving the robot in a 

very straight path both forward 

and backward.  Both motors on 

either side were given the same 

controller commands so that the robot handled much like a tracked vehicle, turning by means of 

what’s called skid steering, rotating the wheels on one side in one direction, while the wheels on 

the other side rotate in the opposite direction.  In practice this worked quite well.   

Photo 4.   The SoutheastCon 2001  Hardware 
                  Competition Playing Field (WHIZard inset). 

 

Step 1.  Motor Requirements.   

The table is ten feet long and there are six, high scoring balls on the far side of the 

starting square.  Although we would like the robot to pick all the balls up in a single foray, we 

should plan on making two passes in half the allotted 5 minute time limit.  While the robot may 

be able to speed across the table, it’s going to have to go quite slowly to locate and pick up the 

steel balls.  If we make four passes across the four foot table width to pick up balls at a pokey 

two inches per second, that will take 96 seconds, or roughly 1.5 minutes per run.  Difficulties 
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involving robot-to-robot interactions are unpredictable and are left out of the present 

guesstimate.  So then there remains one minute to traverse the ten foot length of the playing field 

four times.  That gives WHIZard one minute to go forty feet, a speed of eight inches a second, 

not terribly fast.  Since the torque for climbing the ramp will give a good acceleration on the flat 

sections, we can eliminate the acceleration distance in the calculation of motor speed, therefore: 

 

Motor Speed  =  19.1 x Vavg / D  =  19.1 x 8 / 2  =  76 RPM 

 

Since this playing field has a ramp, we need to find how much torque it takes to climb the 

ramp.  As an initial guess, the WHIZard weight was estimated at 10 lbs, a good, average for 

robots in the eight to 10 inch size range (the final actual weight was 8 lbs).  The torque just 

necessary to keep the robot on an incline, neither moving up nor rolling down, can be found from 

T  =  8 x W x D x sin (θ).  Plugging in WHIZard’s estimated weight of 10 pounds (what was 

know at the time the robot was being designed), a wheel diameter of two inches, and a slope of 

19 degrees, 

 

Motor Torque = 8 x 10 x 2 x sin(19) = 52 oz-inches (all four motors acting together) 

 

This is just the torque needed to keep the robot in place on the ramp, that is without rolling 

backwards.  Since WHIZard will have accelerated on the flat part of the playing field, we don’t 

have to add that to the hill climbing torque.  However, we want more than just the minimum 

torque to keep the robot from rolling backwards so in our usual fashion let’s double the torque to 

104 oz-in.  Dividing by four motors gives a torque requirement of 26 oz-in per motor.  In 

summary our motor specifications (per motor) 

 

Performance Requirement: Torque =  26 oz-in,  Speed = 76 RPM 

 

Step 2.  Motor Specs.  What motors did WHIZard actually use?  Buehler model 61.46.032 gear 

heads with a no load speed of 400 RPM and a stall torque of 58 oz-in.  Using these values and 

substituting a performance requirement of 76 RPM into the motor equations gives a motor torque 

of 47 in-oz.  Thus each motor has an 80% reserve of torque.  WHIZard’s four motors have, at a 
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speed of 76 RPM, a combined torque of 188 oz-in.  Subtracting the 52 oz-in needed to maintain 

position on the ramp, there are an additional 136 oz-in available for maintaining speed or 

accelerating on the ramp.  That’s way more margin then necessary.  This is a result of having 

four motors, which were chosen to insure smooth ramp transition and climbing.  In summary for 

WHIZard and the Buehler motors: 

 

ωο  =  400 rpm,    Ts = 58 oz-in,  Cr  = 0.03,  W = 8 lbs,  D = 2 inches 

 

Using the 26 oz-in torque requirement, each Buehler motor provides a speed of 220 RPM. 

 

Step 3.  Motor Operating Point.  The torque operating point on the level part of the field is 

determined by the rolling friction.  This gives a torque of just 3.8 oz-in on each wheel, which 

gives each motor a speed of 373 RPM.  On the inclined portion of the playing field, each motor 

has an additional burden of 13 oz-in (on the uphill side) for a total of about 16 oz-in.  The 

corresponding motor speed on the ramp is about 290 RPM, if the motors are run at full voltage. 

 

Step 4.  Cruising Speed.  A motor speed of 373 RPM yields a cruising speed of 39 in/sec on the 

flats and 30 in/sec on the incline (for a conservative estimate we ignore the down ramp speed).   

At these speed, WHIZard would have traversed the ten foot long playing field in about 3.5 

seconds.   In practice, a time of 5 sec was typical, for an average speed of 24 inches/sec.  Twenty 

four in/sec gives a new operating motor speed of 224 RPM. 

 

Step 5.  Acceleration Distance.  Using the torque available for all four motors, stall torque of 58 

oz-in each, and a cruising speed of 373 RPM on the level portion of the playing field, the 

acceleration distance is about S = 1 inch.  Previously we made no assumption about acceleration 

distance.  

Could WHIZard have used all the motor torque?  Using the inclined plane method, the 

coefficient of static friction was measured as CS = 0.73.   The max torque without slipping (for 

the actual weight) is:  T  =  8 x 0.73 x 8 lb x 2 in  =  93 oz-in.  Each motor only exerts a torque of 

58 oz-in at most so there was no danger of slipping. 
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Why do we keep on over powering the robots?  As you’ve noticed, coming up with motor 

requirements may, depending on the contest constraints and our experience, involve a lot of 

guess work.  WHIZard had excess reserve, even more than we initially allowed for.  However, 

the motors can always be operated at lower voltages if we desire to reduce the speed and torque.  

There are also other practical considerations.  The motors chosen were small and fit on the 

platform, even considering the small wheel diameter limit, and were available at the time at a 

very good price on the surplus market.  Our major goal in these motor specification 

determinations is to give us some guidance to choose among the myriad of motors available and 

to guarantee that our choice is more than minimally adequate, having plenty of reserve to allow 

for changes in platform design and operational strategy.  If we choose under performing motors, 

we likely will have to redesign the basic mobility platform from scratch or suffer performance 

shortfalls.  Of course, there are penalties for vastly over designing also, including possibly extra 

cost, weight, size, and power requirements. 

 How did WHIZard rank in the competition?  Not very well overall, about in the middle of 

the pack.  The problem was not the mobility but the navigation.  For our present purpose of 

specifying motors for performance, WHIZard was number one – the only robot that successfully 

traversed the ramps.  All the other robots stayed on the home court side of the playing field. 

 

Example 3 – Head Banger:  A Rail Mounted, Ball Returning Robot 

 Head Banger was built for the 2002 SoutheastCon IEEE hardware competition (once you 

start down this road, it’s addictive).  The contest was modeled on the early computer game of 

Pong.  In the SoutheastCon contest, two robots volleyed a ball back and forth across a 4 foot by 8 

foot court, each side of which was mildly inclined at 2.5 degrees (playing field shown in Photo 

5).  In order to keep track of the ball, each team was supplied with the output of a video camera 

mounted above the playing field.  To score a point, a ball had to be deposited in a scoring bin 

behind each robot.  The robots were confined to a 10 inch paddle zone across either end of the 

table.  Up to ten plastic practice golf balls (like a wiffle ball) were dispensed from a central chute 

within the five minute time limit.  The robot, no more than 8 inches wide, was allowed to travel 

along a structure mounted above and around the paddle zone.  All competing teams chose a rail 

mounted robot of one kind or another to keep the robot within the confines of the paddle zone. 
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Head Banger was essentially a ball return carriage that was propelled back and forth 

across the end of the four foot wide table by a stationary, off board motor.  The carriage 

assembly was 

attached to a pillow 

block, a self-aligning 

ball bearing sleeve, 

that slid along a 

precision ground rod.  

A drive motor and 

gear was mounted at 

one end of the rod, 

and an idler gear at 

the other end.  A 

toothed timing belt ran 

around the gears and was attached to the carriage head.  When powered, the motor turned, 

rotated the driving gear and the belt pulled the carriage head back and forth along the rod. 

Head Banger Ball 
Return Carriage 

Drive Motor 

Photo 5.   The SoutheastCon 2002  Hardware 
                  Competition Playing Field.

 

Step 1.  Motor Requirements.  The motor performance requirements were set by the table width, 

the transit time of the ball from one end of the field to the other, and the robot positioning control 

algorithm.  The ball had a maximum return velocity above which it would jump or bounce out of  

the scoring bin and not score any points.  By experimentally batting the ball back and forth and 

measuring the time with a stop watch, it was determined that the shortest transit time was about a 

half second.  During that time the robot carriage head might have to travel the full width of the 

end zone to intercept an incoming ball, a distance of approximately 37 inches (a table width of 

45 inches minus 8 inches for the width of the carriage head).  Thus the average velocity required 

is about 74 inches/sec.  Considering that carriage travel has to be controlled to prevent the robot 

from crashing into the support ends, that’s really honking.  During the early tests, the robot did 

indeed crash frequently, hence the name Head Banger. 

 What motor speed is needed to drive the carriage ball return mechanism at an average 

speed of 74 inches/sec?  We are again confronted with choosing an acceleration distance S.  As 

we saw in the Phoenix example, the motor speed is not sensitive to S when it is small compared 
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to the range of motion.  This time let’s leave S as a variable and return to it when determining the 

torque, which is very sensitive to S values.    We have an average velocity of 74 in/sec, a 

diameter of 4.5 inches (the driving pulley functions in the same way as a wheel for our analysis), 

a distance of 37 inches.  Then, 

 

ω  =  19.1 x (1 + S/X) x  Vavg / D  =  19.1 x (1 + S/37) x 74/4.5 

 

simplifying and rounding a little,       

 

ω  =  314 + 8.5 S 

 

The carriage head, including all moving parts, weighed 3.5 pounds.  Using an initial estimate of 

314 RPM, and substituting values, 

 

T  =  ω2 x D3 x W / 35,314 x S  =  890/S  oz-in, 

 

a whopping number compared to our past examples.  Small values of S are going to make this 

value even larger and yet not change the motor speed very much.  Let’s say we are willing to 

accelerate over a distance of six inches, and similarly decelerate over six inches on the other far 

end.  Then, and we didn’t discuss this before, we need to use 2*S, or 12 inches in the formula for 

ω but only S in the equation for torque.  The reason is that when calculating average velocity we 

have to take into account both the accelerating and decelerating times.  However it takes the 

same amount of torque to accelerate and decelerate.  This actually makes the required torque 

more demanding because we have less space, hence time, to change the velocity.  Therefore, 

using 2*S = 12 inches for the speed and S = 6 inches for the torque we have, 

 

Performance Requirement:   ω = 416 rpm   and T = 260 oz-in. 

 

Step 2.  Motor Specs.  The motor actually used, Japan Servo model DME60 with a 6H9F-H46 

gear head, operated at 24 volts with a no-load speed of 550 RPM and a stall torque of 310 oz-in.  

Evaluating the motor equations with a speed of 416 RPM gives the Japan Servo motor a torque 
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of only 76 oz-in.  Looks like Head Banger would be grossly under powered.  What to do?   One 

thing we can do is change our strategy.  Instead of racing from one end of the field to the other, 

we can park in the center and only have to go half the distance.  After returning a ball, we again 

have time to return to the center before waiting for the return strike.  The distance from the 

center to one end of the field is half as much as before, or 18.5 inches, for an average velocity of 

37 in/sec.   Now the speed and torque requirements are: 

 

Performance Requirement: ω  =  157 + 8.5 S  =  259 rpm,   T  =  100 oz-in. 

 

At a speed of 259 RPM, the servo motor has a torque of 164 oz-in.  Head Banger’s motor has a 

50% torque surplus.  The motor could also be operated at a higher voltage.  Using 30 instead of 

24 volts would provide approximately a 25% increase in torque and speed without seriously 

compromising the lifetime of the motor. 

Could we have used a more powerful motor?   For one thing, there isn’t as much choice 

in the surplus market for this size motor as there is for smaller motors, and for another, the 

requirements aren’t always known well in the beginning of the design process.  For instance, in 

this case, we didn’t have a good guess what the final return mechanism design nor what the 

overall weight of the carriage head would be.  As a general remedy, I usually recommend 

purchasing two of any product one is not familiar with, if finances allow.  Then one unit can be 

over tested and if a problem arises, or even if it doesn’t there is a back-up.  This can be especially 

valuable during contests, when components seem to fail far more frequent than one might 

imagine. 

In summary, for Head Banger and the Japan Servo motor: 

 

ωο  =  550 rpm,    Ts = 310 oz-in,  C = 0.17,  W = 3.5 lbs,  D = 4.5 inches 

 

Head Banger doesn’t roll on wheels but slides on a steel rod.  By tilting the rod until the carriage 

slowly moved along the rail under its own weight, an approximate value was obtained for the 

coefficient of sliding friction, given above as C = 0.17, almost six times the value we have been 

assuming for rolling friction. 
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Step 3.  Motor Operating Point.  Using the C =  0.17, the operating torque is 21 oz-in, which 

gives a motor speed of 513 RPM.  This seems sufficiently higher than the 259 above that there 

should be no problem in whizzing across the rail.  However, the required torque to accelerate 

Head Banger is 7 times more than the  21 oz-in to maintain a constant speed.  The acceleration 

requirement is clearly going to dominate the motor performance. 

  

Step 4.  Cruising Speed.  513 RPM gives an cruising speed of 121 inches/sec.  With an assumed 

acceleration distance of 6 inches, the average speed is 91 in/sec, better than our estimate of 37 

in/sec. 

 

Step 5.  Acceleration Distance.  The acceleration distance is 47 inches!  What happened?  While 

it may seem that we had done better by exceeding our required average speed of 37 in/sec, it 

takes longer and farther to achieve the higher speed of 91 in/sec.  Long before Head Banger 

would accelerate to 91 in/sec, it would have traveled more than 37 inches and smacked into the 

end of the rail.  On the other hand, the acceleration distance to reach a speed of 259 RPM, our 

requirement for an average speed of 37 in/sec, is (miraculously) 6.2 inches.  When establishing 

requirements we chose 6 inches to see if we could find a value of S that would match the Head 

Banger motor to speed and torque requirements.  Now we confirm that the given motor can 

achieve the goal of traveling half the length of the rail in 0.5 seconds. 

 What about our choice for S, how would our result have changed with a different value?  

Lower values of S will give larger torques, which may exceed the motor stall torque rating; 

higher values of S will give larger values of ω, which may exceed the motor no load speed.  

Looks like we made a lucky guess for S.  Of course one can build a table with various S values to 

see if there is a matching point on a proposed motor speed-torque curve.  When the acceleration 

distance is small compared to the length of the playing field, we can ignore it in the calculation 

of cruising speed and the torque to overcome friction or inclines dominates.  When S is not 

small, for Head Banger S is 17% of the 37 inch travel distance, the torque to accelerate 

dominates.  This was clear during testing of Head Banger.  The speed of the return carriage 

increased visibly and the sound of the carriage sliding on the rail had a noticeable increase in 

pitch. 
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Motor Selection Summary 

 In brief, we’ve seen how to analyze contest rules to derive robot speed and acceleration 

requirements, how to calculate motor speed and torque from basic robot parameters like weight 

and wheel size, and we’ve applied these techniques to three examples drawn from real robots 

built for real contests.  You may have noticed that the process is not necessarily straight forward 

but requires some serious thought and strategizing.  There are also some techniques, like speed 

control, over volting, and wheel selection, that we can use to adapt available motors to our needs.  

Practical motor selection is one of the least understood techniques among hobby roboticists.  We 

have presented a quantitative approach that takes the mystery out of the process, yet leaves you 

enough wiggle room to customize you’re creations. 
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